The transition between active and de-activated forms of NADH:ubiquinone oxidoreductase (Complex I) in the mitochondrial membrane of Neurospora crassa.
نویسندگان
چکیده
The mammalian mitochondrial NADH:ubiquinone oxidoreductase (Complex I) has been shown to exist in two kinetically and structurally distinct slowly interconvertible forms, active (A) and de-activated (D) [Vinogradov and Grivennikova (2001) IUBMB Life 52, 129-134]. This work was undertaken to investigate the putative Complex I A-D transition in the mitochondrial membrane of the lower eukaryote Neurospora crassa and in plasma membrane of the prokaryote Paracoccus denitrificans, organisms that are eligible for molecular genetic manipulations. The potential interconversion between A and D forms was assessed by examination of the initial and steady-state rates of NADH oxidation catalysed by inside-out submitochondrial ( N. crassa ) and sub-bacterial ( P. denitrificans ) particles and their sensitivities to N -ethylmaleimide and Mg(2+). All diagnostic tests provide evidence that slow temperature- and turnover-dependent A-D transition is an explicit feature of eukaryotic N. crassa Complex I, whereas the phenomenon is not seen in the membranes of the prokaryote P. denitrificans. Significantly lower activation energy for A-to-D transition characterizes the N. crassa enzyme compared with that determined previously for the mammalian Complex I. Either a lag or a burst in the onset of the NADH oxidase assayed in the presence of Mg(2+) is seen when the reaction is initiated by the thermally de-activated or NADH-activated particles, whereas the delayed final activities of both preparations are the same. We conclude that continuous slow cycling between A and D forms occurs during the steady-state operation of Complex I in N. crassa mitochondria.
منابع مشابه
Purification of the NADH:ubiquinone oxidoreductase (complex I) of the respiratory chain from the inner mitochondrial membrane of Solanum tuberosum.
The plant NADH:ubiquinone oxidoreductase (or complex I) was isolated from potato (Solanum tuberosum) mitochondria. The multisubunit enzyme was solubilized with detergents, Triton X-100 and 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate (CHAPS), out of the inner mitochondrial membranes and purified by hydroxylapatite and gel filtration chromatography. The preparation was found to be v...
متن کاملPrimary structure and mitochondrial import in vitro of the 20.9 kDa subunit of complex I from Neurospora crassa.
The 20.9 kDa subunit of NADH:ubiquinone oxidoreductase (complex I) from Neurospora crassa is a nuclear-coded component of the hydrophobic arm of the enzyme. We have determined the primary structure of this subunit by sequencing a full-length cDNA and a cleavage product of the isolated polypeptide. The deduced protein sequence is 189 amino acid residues long and contains a putative membrane-span...
متن کاملSupramolecular organization of the respiratory chain in Neurospora crassa mitochondria.
The existence of specific respiratory supercomplexes in mitochondria of most organisms has gained much momentum. However, its functional significance is still poorly understood. The availability of many deletion mutants in complex I (NADH:ubiquinone oxidoreductase) of Neurospora crassa, distinctly affected in the assembly process, offers unique opportunities to analyze the biogenesis of respira...
متن کاملThe internal alternative NADH dehydrogenase of Neurospora crassa mitochondria.
An open reading frame homologous with genes of non-proton-pumping NADH dehydrogenases was identified in the genome of Neurospora crassa. The 57 kDa NADH:ubiquinone oxidoreductase acts as internal (alternative) respiratory NADH dehydrogenase (NDI1) in the fungal mitochondria. The precursor polypeptide includes a pre-sequence of 31 amino acids, and the mature enzyme comprises one FAD molecule as ...
متن کاملDefinition of the nuclear encoded protein composition of bovine heart mitochondrial complex I. Identification of two new subunits.
Mitochondrial NADH:ubiquinone oxidoreductase (complex I) from bovine heart is a complicated multisubunit, membrane-bound assembly. Seven subunits are encoded by mitochondrial DNA, and the sequences of 36 nuclear encoded subunits have been described. The subunits of complex I and two subcomplexes (Ialpha and Ibeta) were resolved on one- and two-dimensional gels and by reverse-phase high performa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Biochemical journal
دوره 369 Pt 3 شماره
صفحات -
تاریخ انتشار 2003